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Introduction. 
Studies from the Dent laboratory have previously shown that CHK1 inhibitors activate the MEK-ERK signaling 
pathway. Inhibition of CHK1 inhibitor –induced ERK activation lead to tumor cell killing.  Based on the fact that 
CHK1 function is regulated in part by PARP1, we hypothesized that: (a) that inhibition of PARP1 would block 
CHK1 inhibitor –induced activation of ERK; (b) that CHK1 and PARP1 inhibitors would synergize to kill tumor 
cells. Indeed, our published data, and unpublished data show that CHK1 and PARP1 inhibitors interact in a 
synergistic fashion to kill breast cancer cells both in vitro and in vivo. 
 
Body and key research accomplishments: statement of work and the completion of stated tasks. 
 
Task 1. Determine whether ATM is the kinase responsible for Chk1 inhibitor –induced _H2AX 
phosphorylation. 
Task 1 has been completed and the data published (please see appendix manuscript). (1) 
 
Task 2. Determine whether inhibition of PARP1 enhances Chk1 inhibitor –induced DNA damage in 
vitro. 
Task 2 has not yet been initiated. 
 
Task 3. Does PARP1inhibitor + Chk1 
inhibitor treatment radiosensitize 
mammary tumor cells in vitro? 
Task 3 has been completed (1).  We 
have extended out analyses from ER+ 
breast cancer cells into examining the 
impact of CHK1 and PARP1 inhibitors in 
triple negative breast cancer cells (see 
graph to right).  Our unpublished data 
shows that regardless of triple negative 
status or PTEN status the combination 
of CHK1 and PARP1 inhibitors kills 
mammary carcinoma cells. 
 
 
 
Task 4. Does PARP1 inhibitor enhance the toxicity of Chk1 
inhibitors in MCF7 xenograft mammary tumor cells? 
Task 4 has been partially completed. We have determined that 
BT549 (triple negative) and BT474 (HER2+) tumors (see right) 
show a greater than additive drug combination effect as tumors 
growing in the mammary fat pad.  On-going studies are 
examining the effect of the drugs on MCF7 cells. 
 
 
 
Task 5. Does PARP1inhibitor enhance the toxicity of Chk1 inhibitors in MMTV-HER2 mouse mammary 
tumor cells? 
As noted above in the graph to the right, we have shown in vivo using human HER2+ cells that PARP1 and 
CHK1 inhibitors synergize to suppress tumor growth in vivo.  Continuing studies are defining whether other 
HER2+ breast cancer cells, including the mouse HER2+ line are effectively killed in vivo by our drug 
combination.  
 
Task 6. Does PARP1inhibitor + Chk1 inhibitor treatment radiosensitize mammary tumor cells in vivo? 
PARP1 and CHK1 treatment radiosensitizes multiple mammary tumor cell types in vitro.  We are presently 
performing studies with PARP/CHK inhibitors and radiotherapy to determine whether this drug-combination will 
also radiosensitize tumor cells in vivo.  The first experiment on this aspect of the project was initiated Oct. 24th 
2011. 
       4 



 

 

Reportable Outcomes and Conclusions. 
We have made progress in all key aspects of the proposal as they relate to the translation of our drug 
combination to the clinic. We have shown that the PARP1 inhibitor and CHK1 inhibitor drug combination kills 
multiple breast cancer types in vitro including estrogen dependent; estrogen-dependent made estrogen 
independent; HER2+; PTEN null; triple negative.  We have shown in HER2+ and triple negative tumors 
growing in the mammary fat pad that PARP1 and CHK1 inhibitors interact to suppress tumor growth.  

We conclude from our findings thus-far that the combination of a PARP1 inhibitor together with a CHK1 
inhibitor represents a useful and novel approach to kill mammary carcinoma cells.  Additional animal studies 
will be required (as proposed in the SOM) to fully define the utility of our drug combination in vivo.  
 
References and Appendices. 

1. Mitchell C, Park M, Eulitt P, Yang C, Yacoub A, Dent P. Poly(ADP-ribose) polymerase 1 modulates the 
lethality of CHK1 inhibitors in carcinoma cells.  Mol Pharmacol. 2010; 78: 909-17.  
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CHK1 Inhibitors in Carcinoma Cells

Clint Mitchell, Margaret Park, Patrick Eulitt, Chen Yang, Adly Yacoub, and Paul Dent
Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia

Received June 29, 2010; accepted August 9, 2010

ABSTRACT
Prior studies have demonstrated that inhibition of CHK1 can
promote the activation of extracellular signal-regulated kinases
1 and 2 (ERK1/2) and phosphorylation of histone H2AX and that
inhibition of poly(ADP-ribose) polymerase 1 (PARP1) can affect
growth factor-induced ERK1/2 activation. The present studies
were initiated to determine whether CHK1 inhibitors interacted
with PARP1 inhibition to facilitate apoptosis. Transient expres-
sion of dominant-negative CHK1 raised basal ERK1/2 activity
and prevented CHK1 inhibitors from activating ERK1/2. CHK1
inhibitors modestly increased the levels of PARP1 ADP ribosy-
lation and molecular or small-molecule inhibition of PARP1
blocked CHK1 inhibitor-stimulated histone H2AX phosphoryla-
tion and activation of ERK1/2. Stimulated histone H2AX phos-
phorylation was ataxia telangiectasia-mutated protein-depen-

dent. Multiple CHK1 inhibitors interacted in a greater than
additive fashion with multiple PARP1 inhibitors to cause trans-
formed cell-killing in short-term viability assays and synergisti-
cally killed tumor cells in colony-formation assays. Overexpres-
sion of BCL-xL or loss of BAX/BAK function, but not the
function of BID, suppressed CHK1 inhibitor � PARP1 inhibitor
lethality. Inhibition of BCL-2 family protein function enhanced
CHK1 inhibitor � PARP1 inhibitor lethality and restored drug-
induced cell-killing in cells overexpressing BCL-xL. Thus,
PARP1 plays an important role in regulating the ability of CHK1
inhibitors to activate ERK1/2 and the DNA damage response.
An inability of PARP1 to modulate this response results in
transformed cell death mediated through the intrinsic apoptosis
pathway.

Introduction
Multiple CHK1 inhibitors, including 7-hydroxystaurospo-

rine (UCN-01) and 5-(3-fluoro-phenyl)-3-ureido-thiophene-2-
carboxylic acid (S)-piperidin-3-ylamide hydrochloride (AZD7762)
are currently being evaluated as antineoplastic agents in clin-
ical trials, both alone and in combination with chemothera-
peutic agents and ionizing radiation (Mow et al., 2001; Prud-

homme, 2006). These agents are proposed to enhance the
toxicity of chemotherapeutic drugs by inhibition of CHK1
with subsequent inappropriate cell cycle progression after
DNA damage (Graves et al., 2000). Inhibition of CHK1 may
directly promote the activation of the protein phosphatase
CDC25C and can also interfere with CDC25C elimination by
blocking its binding to 14-3-3 proteins and subsequent deg-
radation (Peng et al., 1997; Graves et al., 2000). The CHK1
inhibitor UCN-01 is known to have many additional intra-
cellular kinase targets, including the downstream effector of
phosphatidylinositol 3-kinase, 3-phosphoinositide-dependent
kinase 1, and “classic” protein kinase C isoforms (Komander
et al., 2003).

Based on initial phase I studies, the maximal free achiev-
able concentration of UCN-01 in human plasma was believed
to be at or below �100 nM with a long plasma half-life

This work was funded by the National Institutes of Health National Insti-
tute of Diabetes and Digestive and Kidney Diseases [Grant R01-DK52825]; the
National Institutes of Health National Cancer Institute [Grants P01-
CA104177; R01-CA108325; R01-CA150214]; Department of Defense Awards
[Grants DAMD17-03-1-0262; W81XWH-10-1-0009]; The Jim Valvano “Jimmy
V” Foundation; The Goodwin Foundation; and the Universal Inc. Professorship
in Signal Transduction Research (P.D.).

Article, publication date, and citation information can be found at
http://molpharm.aspetjournals.org.
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ABBREVIATIONS: UCN-01, 7-hydroxystaurosporine; ERK, extracellular signal-regulated kinase; MEK, mitogen-activated protein kinase kinase;
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combination index; FBS, fetal bovine serum; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; siRNA, small interfering RNA; PARP1,
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PD98059, 2�-amino-3�-methoxyflavone; PJ34, N-(5,6-dihydro-6-oxo-2-phenanthridinyl)-2-acetamide hydrochloride; AG1478, 4-(3�-chloroanilino)-
6,7-dimethoxy-quinazoline; GX15-070, obatoclax; ABT888, veliparib; HA14-1, 2-amino-6-bromo-a-cyano-3-(ethoxycarbonyl)-4H-1-benzopy ran-
4-acetic acid ethyl ester; ABT-263, navitoclax; KU55933, 2-(4-morpholinyl)-6-(1-thianthrenyl)-4H-pyran-4-one; CEP6800, 10-(aminomethyl)-
4,5,6,7-tetrahydro-1H-cyclopenta[a]pyrrolo[3,4-c]carbazole-1,3(2H)-dione.

0026-895X/10/7805-909–917$20.00
MOLECULAR PHARMACOLOGY Vol. 78, No. 5
Copyright © 2010 The American Society for Pharmacology and Experimental Therapeutics 67199/3633656
Mol Pharmacol 78:909–917, 2010 Printed in U.S.A.

909

 at V
irginia C

om
m

onw
ealth U

niv T
om

pkins M
cC

aw
 Lib/A

cq S
rv on O

ctober 31, 2011
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

7199.DC1.html 
http://molpharm.aspetjournals.org/content/suppl/2010/11/10/mol.110.06
Supplemental Material can be found at:

 http://molpharm.aspetjournals.org/content/79/1/207.full.pdf
An erratum has been published:



because of UCN-01 binding to human �1 acidic glycoprotein
(Fuse et al., 1998, 2005; Sausville et al., 1998; Hagenauer et
al., 2004; Dees et al., 2005). Nonetheless, the combination of
UCN-01 with topotecan or cisplatin has shown some prelim-
inary evidence of patient activity (Hotte et al., 2006; Perez et
al., 2006). We have noted in a wide variety of tumor cell types
that UCN-01 activates the ERK1/2 pathway and that phar-
macological or genetic inhibition of the ERK1/2 pathway
dramatically potentiates apoptosis and suppresses tumor
growth in vivo (Dai et al., 2001, 2002, 2008; McKinstry et al.,
2002; Hawkins et al., 2005; Hamed et al., 2008). We have
reported previously that the novel CHK1 inhibitor AZD7762
interacts with MEK1/2 inhibitors and farnesyltransferase
inhibitors in a manner similar to that of UCN-01 to kill
malignant hematopoietic cells in vitro (Pei et al., 2008). Thus,
multiple CHK1 inhibitors can interact with multiple MEK1/2
inhibitors to promote tumor cell killing. It has been noted
that CHK1 inhibition leads to the formation of single- and
double-stranded DNA breaks, as judged by increased phos-
phorylation of the atypical histone H2AX, often referred to as
�H2AX (Syljuåsen et al., 2005; Bucher and Britten, 2008).
Thereafter, we also noted that UCN-01, in addition to acti-
vating ERK1/2, promotes increased phosphorylation of his-
tone H2AX, indicative that DNA damage was occurring be-
cause of the inhibition of CHK1 function and that inhibition
of ERK1/2 further enhanced histone H2AX phosphorylation
before induction of apoptosis (Dai et al., 2008). Thus, CHK1-
dependent regulation of ERK1/2 may play an important role
in DNA damage-sensing and repair in transformed cells.

Cells contain multiple complexes of proteins that regulate
DNA damage-sensing and repair responses. One central pro-
tein in the regulation of multiple forms of DNA repair pro-
cesses is poly(ADP-ribose) polymerase 1 (PARP1), because of
its central role in DNA repair, particularly nonhomologous
end joining, and has been pharmacologically targeted for
cancer therapeutics with inhibitors that block its ADP ribo-
sylation and repair function (Schreiber et al., 2002, 2006;
Rodon et al., 2009). Indeed, multiple PARP1 inhibitors have
been developed with several in clinical use, including 10-(4-
methyl-piperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de]an-
thracen-3-one (GPI15427), 10-(aminomethyl)-4,5,6,7-tetra-
hydro-1H-cyclopenta[a]pyrrolo[3,4-c]carbazole-1,3(2H)-dione
(CEP6800), 8-hydroxy-2-methyl-4(3H)-quinazolinone (NU1025),
and olaparib (AZD2281) (Graziani and Szabó, 2005). Al-
though initially noted for its role in the repair of DNA strand
breaks, PARP1 has been shown to have a much wider range
of biological actions and participates in the regulation of
transcription, DNA replication, apoptosis, and modulating
reactive oxygen species levels (Spina Purrello et al., 2002;
McCabe et al., 2006; Quénet et al., 2009). We and others have
noted that signaling from the epidermal growth factor recep-
tor can regulate PARP1 activity, in part through regulation
of the ERK1/2 pathway (Hagan et al., 2007).

Based on the fact that CHK1 inhibitors activate ERK1/2
and promote H2AX phosphorylation, and that PARP1 func-
tion has been linked to ERK1/2 signaling, we investigated
whether the inhibition of PARP1 function modulated the
activation of cell signaling pathways induced by CHK1 in-

Fig. 1. Inhibition of CHK1 enhances ERK1/2 activation in a PARP-1-dependent fashion. A, MCF7 cells were transfected with either an empty vector
control plasmid or a plasmid to express dominant-negative CHK1 (dnCHK1). Twenty-four hours after transfection, cells were treated with vehicle
(VEH, DMSO), UCN-01 (100 nM), or AZD7762 (50 nM). Cells were isolated at the indicated time points and subjected to SDS-PAGE followed by
immunoblotting to determine the phosphorylation of ERK1/2 (P-ERK1/2) or the expression of GAPDH. Data are from a representative of two separate
studies. B, MCF7 cells were treated with vehicle (VEH, DMSO) or the PARP-1 inhibitor PJ34 (3 �M) followed 30 min later by CHK1 inhibitors UCN-01
(100 nM) or AZD7762 (50 nM). Cells were isolated 0 to 6 h after CHK1 inhibitor addition, as indicated. Cell lysates were subjected to SDS-PAGE
followed by immunoblotting to determine the phosphorylation of ERK1/2 (P-ERK1/2), the ADP ribosylation of PARP-1 (10H antibody), or the
expression of GAPDH. Data are from a representative of three separate studies. C, MCF7 cells were transfected with either a scrambled nonspecific
siRNA (siSCR, 20 nM) or an siRNA to knock down the expression of PARP-1. Twenty-four hours after transfection, cells were treated with AZD7762
(50 nM). Cells were isolated at the indicated time points and subjected to SDS-PAGE followed by immunoblotting to determine the phosphorylation
of ERK1/2 (P-ERK1/2), the expression of PARP-1, or the expression of GAPDH. Data are from a representative of two separate studies.
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hibitor treatment. Our data demonstrate that CHK1-induced
phosphorylation of ERK1/2 and H2AX is blunted or abolished
when PARP1 function or expression is reduced. A reduced
ability of cells to increase ERK1/2 activation correlated with
a synergistic induction of cell-killing that was mediated
through the intrinsic apoptosis pathway.

Materials and Methods
Materials. Phospho-/total-ERK1/2 antibodies, GAPDH, 10H ADP

ribosylation, PARP1, phospho-/total-CHK1, ataxia telangiectasia-
mutated (ATM), and phospho-/total-H2AX antibodies were all pur-
chased from Cell Signaling Technology, Inc. (Danvers, MA). Termi-
nal deoxynucleotidyl transferase dUTP nick-end labeling kits were
purchased from PerkinElmer Life and Analytical Sciences (Waltham,
MA) and Roche Applied Science (Mannheim, Germany), respectively.
Trypsin-EDTA, RPMI 1640 medium, and penicillin-streptomycin
were purchased from Invitrogen (Carlsbad, CA). MDA-MB-231,
MCF7, SKBR3, BT474, and PANC1 cells were purchased from the
American Type Culture Collection (Manassas, VA). The 4T1 line was
kindly provided by Dr. A. Larner (Virginia Commonwealth University,
Richmond, VA). Simian virus 40 Large T mouse embryonic fibroblasts
lacking the expression of various proapoptotic BH3 domain proteins
were kindly provided by Dr. S. Korsmeyer (Harvard University, Boston,
MA). The plasmid to express dominant-negative CHK1 was kindly
supplied by Dr. Steven Grant (Virginia Commonwealth University).
2-(2-Chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-
benzamide(PD184352), 2�-amino-3�-methoxyflavone (PD98059),
NU1025, N-(5,6-dihydro-6-oxo-2-phenanthridinyl)-2-acetamide hy-
drochloride (PJ34), and 4-(3�-chloroanilino)-6,7-dimethoxy-quinazo-
line (AG1478) were purchased from Calbiochem (San Diego, CA).
The validated siRNA molecules used knockdown ATM from QIAGEN
(Valencia, CA). UCN-01 was purchased from Sigma-Aldrich (St.
Louis, MO). AZD7762 and AZD2281 were purchased from Axon
Medchem (Groningen, the Netherlands). UCN-01 was purchased
from Sigma-Aldrich. Obatoclax (GX15-070) was supplied by GeminX
Pharmaceuticals (Malvern, PA).

Culture and In Vitro Exposure of Cells to Drugs. Tumor cells
for the studies in this manuscript were cultured at 37°C [5% (v/v)
CO2] in vitro using RPMI 1640 medium supplemented with 10% (v/v)
fetal calf serum. In vitro vehicle/UCN-01/PD184352/AZD7762/PJ34
and so forth treatment was from a 100 mM stock solution of each
drug, and the maximal concentration of vehicle (DMSO) in media
was 0.02% (v/v).

Cell Treatments, SDS-PAGE, and Western Blot Analysis.
For in vitro analyses of short-term apoptosis effects, cells were
treated with vehicle/drugs or their combination for the indicated
times. Cells for colony formation assays were plated at 250 to 4000
cells/well in sextuplicate and for in vitro assays 14 h after plating
were treated with the individual or the drug combination(s) at a fixed
increasing dose ratio according to the method of Chou and Talalay
(1984) for 48 h followed by drug removal. Then, 10 to 14 days after
exposure or tumor isolation, plates were washed in phosphate-buff-
ered saline, fixed with methanol, and stained with a filtered solution
of crystal violet [5% (w/v)]. After washing with tap water, the colonies
were counted both manually (by eye) and digitally using a ColCount
plate reader (Oxford Optronics, Oxford, England). Data presented
are the arithmetic mean (� S.E.M.) from both counting methods
from multiple studies. Colony formation was defined as a colony of 50
cells or greater.

For SDS-PAGE and immunoblotting, cells were plated at 5 � 105

cells/cm2 and treated with therapeutic drugs at the indicated con-
centrations, and after the indicated time of treatment, they were
lysed with whole-cell lysis buffer (0.5 M Tris-HCl, pH 6.8, 2% SDS,
10% glycerol, 1% �-mercaptoethanol, and 0.02% bromphenol blue),
and the samples were boiled for 30 min. The boiled samples were
loaded onto 10 to 14% SDS-PAGE, and electrophoresis was run

overnight. Proteins were electrophoretically transferred onto 0.22
�m of nitrocellulose and immunoblotted with various primary anti-
bodies against different proteins. All immunoblots were visualized
by use of an Odyssey Infrared Imaging System (LI-COR Biosciences,
Lincoln, NE).

Fig. 2. PARP-1 is essential for CHK1 inhibitor-induced phosphorylation
of histone H2AX. A, MCF7 cells were treated with vehicle (VEH, DMSO)
or the PARP-1 inhibitor PJ34 (3 �M) followed 30 min later by CHK1
inhibitors UCN-01 (100 nM) or AZD7762 (50 nM). Cells were isolated 0 to
6 h after CHK1 inhibitor addition, as indicated. Cell lysates were sub-
jected to SDS-PAGE followed by immunoblotting to determine the phos-
phorylation of H2AX or the expression of GAPDH. Data are from a
representative of three separate studies. B, MCF7 cells were transfected
with either a scrambled nonspecific siRNA (siSCR, 20 nM) or an siRNA
known to induce down-expression of PARP-1. Twenty-four hours after
transfection, cells were treated with UCN-01 (100 nM) or AZD7762 (50
nM). Cells were isolated at the indicated time points and subjected to
SDS-PAGE followed by immunoblotting to determine the phosphoryla-
tion of H2AX, the expression of PARP-1, or the expression of GAPDH.
Data are from a representative of two separate studies. C, MCF7 cells
were transfected with nonspecific siRNA control (siSCR) or an siRNA to
knock down ATM (siATM). Twenty-four hours after transfection, cells
were treated with vehicle (VEH, DMSO) or CHK1 inhibitors UCN-01 (100
nM) or AZD7762 (50 nM). Cells were isolated 3 h after CHK1 inhibitor
addition, as indicated. Cell lysates were subjected to SDS-PAGE followed
by immunoblotting to determine the phosphorylation of H2AX/CHK1 or
the expression of GAPDH, ATM, CHK1, and H2AX. Data are from a
representative of three separate studies.
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Short-Term Cell Viability Assays after Drug Exposure. Cells
were isolated at the indicated times by trypsinization and either
were subjected to trypan blue cell viability assay by counting in a
light microscope or were fixed to slides and stained using a commer-
cially available Diff-Quick (GEIMSA, Oviedo, Spain) assay kit.

Recombinant Adenoviral Vectors: Infection In Vitro. We gen-
erated and purchased recombinant adenoviruses noted previously to
express constitutively activated MEK1 or AKT proteins and mitochon-
drial protective protein BCL-xL (Vector Biolabs, Philadelphia, PA).
Unless otherwise stated, cells were infected with these adenoviruses at
an approximate multiplicity of infection (m.o.i.) of 50. As noted above,
cells were further incubated for 24 h to ensure adequate expres-
sion of transduced gene products before drug exposures.

siRNA Transfection In Vitro. Approximately a 10 nM concen-
tration of a defined prevalidated siRNA (Ambion, Austin, TX) was
diluted into 50 �l of growth media lacking FBS and penicillin/strep-
tomycin. Based on the manufacturer’s instructions, an appropriate
amount of Lipofectamine 2000 reagent (usually 1 �l) (Invitrogen,
Carlsbad, CA) was diluted into a separate vial containing media
lacking FBS or penicillin/streptomycin. The two solutions were in-
cubated separately at room temperature for 5 min and then mixed
together (vortexed) and incubated at room temperature for 30 min.
The mixture was added to each well (slide or 12-well plate) contain-

ing an appropriate amount (� 0.5 ml) of penicillin/streptomycin and
FBS-free medium. Cells were incubated for 2 to 4 h at 37°C with
gentle rocking. Media were then replaced with 1 ml of 1� penicillin/
streptomycin and FBS-containing media.

Data Analysis. Comparison of the effects between various in vitro
drug treatments was performed after analysis of variance using the
Student’s t test. Differences with a p value of �0.05 were considered
statistically significant. Experiments shown are the means of mul-
tiple individual points from multiple studies (� S.E.M.). Median
dose-effect isobologram colony-formation analyses to determine syn-
ergism of drug interaction were performed according to the methods
of Chou and Talalay (1984) using the CalcuSyn program for Windows
(Biosoft, Cambridge, UK). Cells were treated with agents at an
escalating fixed concentration drug dose. A combination index of
�1.00 indicates synergy of interaction between the two drugs; a
combination index of �1.00 indicates an additive interaction; a
combination index (CI) value of �1.00 indicates antagonism of
action between the agents.

Results
We have published previously that MEK1/2 inhibitors

interact with UCN-01 in a synergistic manner to kill mam-

Fig. 3. PARP-1 inhibition enhances the toxicity of CHK1 inhibitors in transformed cells. A, breast cancer cells were plated in triplicate and treated
with vehicle (VEH, DMSO), PJ34 (3 �M), UCN-01 (50 nM), or AZD7762 (25 nM). Cells were isolated 48 h after exposure, and viability was determined
using trypan blue exclusion. Data for each assay is the mean of all data points from three studies � S.E.M. B, MCF7 breast cancer and PANC-1 and
MiaPaca2 pancreatic cancer cells were plated in triplicate and treated with vehicle (VEH, DMSO), PJ34 (3 �M), UCN-01 (50 nM), or AZD7762 (25 nM).
Cells were isolated 48 h after exposure, and viability was determined using trypan blue exclusion. Data for each assay is the mean of all data points
from three studies � S.E.M. C, MCF7 cells were plated in triplicate and treated with vehicle (VEH, DMSO), NU1025 (10 �M), AZD2281 (0.5 �M),
ABT888 (1.0 �M), and/or AZD7762 (25 nM), or UCN-01 (50 nM). Cells were isolated 48 h after exposure, and viability was determined using trypan
blue exclusion. Data for each assay is the mean of all data points from three studies � S.E.M. D, SKBR3 and BT474 cells were plated in triplicate and
treated with vehicle (VEH, DMSO), NU1025 (10 �M), and/or AZD7762 (25 nM). Cells were isolated 48 h after exposure, and viability was determined
using trypan blue exclusion. Data for each assay is the mean of all data points from three studies � S.E.M.
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mary tumor cells in vitro and in vivo (Hamed et al., 2008).
To prove or refute whether UCN-01 and a chemically un-
related CHK1 inhibitor, AZD7762, were mediating their
ERK1/2-activating effects via inhibition of CHK1, we made
use of a plasmid to express dominant-negative CHK1. Ex-
pression of a dominant-negative CHK1 protein in MCF7
cells enhanced basal levels of ERK1/2 phosphorylation
within 24 h and blunted the ability of UCN-01 or AZD7762
to stimulate ERK1/2 phosphorylation (Fig. 1A).

UCN-01 was shown previously in malignant blood tumor
cells to increase the phosphorylation of histone H2AX,
indicative of DNA damage (Dai et al., 2008). Based on this
observation, we determined whether another marker of
the DNA damage response in tumor cells, PARP1 ADP
ribosylation, could be visualized. Treatment of MCF7
breast cancer cells with either UCN-01 or AZD7762 in-
creased PARP1 ADP ribosylation, as judged using the anti-
poly(ADP ribose) 10H antibody (Fig. 1B). It is noteworthy
that increased ERK1/2 phosphorylation correlated with
elevated PARP1 (10H) reactivity. Coexposure of cells to the
PARP inhibitor PJ34 blocked CHK1 inhibitor-induced
PARP1 activation and PARP1 ADP ribosylation. To con-
firm our findings using a molecular approach, we knocked
down the expression of PARP1. Knockdown of PARP1 ex-
pression in breast cancer cells significantly reduced
AZD7762-induced activation of ERK1/2 (Fig. 1C). Thus,
CHK1 inhibitor-induced ERK1/2 activation requires func-
tional expression of PARP1.

In breast cancer cells, UCN-01 and AZD7762 rapidly
increased H2AX phosphorylation (Fig. 2, A and B). Inhibi-
tion of PARP1, either by use of PJ34 or by knockdown of
PARP1 expression, significantly reduced the induction of
H2AX phosphorylation by the CHK1 inhibitors. In other
model systems, phosphorylation of H2AX has been shown
to be mediated by the ATM protein, and PARP1 plays a key
role in permitting ATM activation. Knockdown of ATM
expression prevented UCN-01 or AZD7762 from increasing
H2AX phosphorylation (Fig. 2C). It is noteworthy that both
CHK1 inhibitors promoted a compensatory increase in
CHK1 phosphorylation, which was also ATM-dependent.
Together, the data in Figs. 1 and 2 demonstrate that CHK1
inhibitor-mediated phosphorylation of both ERK1/2 and
H2AX requires PARP1 function and that phosphorylation
of H2AX after CHK1 inhibitor exposure requires expres-
sion of ATM.

We next explored the survival of PARP1-inhibited cells
after CHK1 inhibitor treatment. Inhibition of PARP1 pro-
moted CHK1 inhibitor lethality in a range of breast cancer
cells (Fig. 3A). Very similar data were obtained in pancre-
atic cancer cells (Fig. 3B). In agreement with data using
short-term viability assays, median dose-effect colony for-
mation assays, as judged by CI values of less than 1.00,
demonstrated a synergy of drug interaction in killing tu-
mor cells (Tables 1 and 2). PARP1 inhibitors are presently
generating a significant level of clinical interest, and we
determined whether other more clinically relevant PARP1
inhibitors recapitulated the lethal effects of PJ34 or siRNA
knockdown of PARP1. The clinically relevant PARP1 in-
hibitors veliparib (ABT888), NU1025, and AZD2281 en-
hanced the lethality of UCN-01 and of AZD7762 in breast
cancer cells (Fig. 3C). Similar data were obtained in other
breast cancer cells (Fig. 3D). Because CHK1 inhibitor-

Fig. 3. Continued. E, MCF7 cells were transfected with nonspecific
siRNA control (siSCR) or an siRNA to knock down ATM (siATM). Twen-
ty-four hours after transfection, cells were treated with vehicle (VEH,
DMSO) and/or by AZD7762 (25 nM) or UCN-01 (50 nM). Cells were
isolated 48 h after exposure, and viability was determined using trypan
blue exclusion. Data for each assay is the mean of all data points from
three studies � S.E.M. F, MCF7 cells were plated in triplicate and
treated with vehicle (VEH, DMSO), AZD2281 (0.5 �M), AZD7762 (25
nM), or AZD2281 � AZD7762 in combination. Thirty minutes after ex-
posure, cells are treated with vehicle (DMSO) or with increasing concen-
trations of the ATM inhibitor 2-(4-morpholinyl)-6-(1-thianthrenyl)-4H-
pyran-4-one (KU55933) (1–10 �M). Cells were isolated 48 h after
exposure, and viability was determined using trypan blue exclusion. Data
for each assay is the mean of all data points from three studies � S.E.M.
G, left, MCF7 cells were plated and treated with vehicle (VEH, DMSO) or
the PARP-1 inhibitor PJ34 (3 �M) followed 30 min later by CHK1 inhib-
itor AZD7762 (25 nM). Cells were irradiated (4 Gy) and used for short-
term viability assays 48 h after exposure and for viability determined
using trypan blue exclusion. Right, MCF7 cells were plated in sextupli-
cate as single cells, and 12 h after plating, cells were treated with vehicle
(VEH, DMSO) or the PARP-1 inhibitor PJ34 (3 �M) followed 30 min later
by CHK1 inhibitors UCN-01 (50 nM) or AZD7762 (25 nM). Cells were
irradiated 30 min after drug additions. Forty-eight hours after drug
exposure, the media were changed, and cells were cultured in drug-free
media for an additional 10 to 14 days (n � 2 � S.E.M.).
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induced ATM activation was PARP1-dependent, we deter-
mined the impact of inhibiting ATM function on drug
combination lethality. Knockdown of ATM expression sig-
nificantly enhanced the lethality of PARP1 inhibitor �
CHK1 inhibitor lethality, suggesting that in the absence of
PARP1 � CHK1 signaling, the compensatory activation of
ATM is a protective signal (Fig. 3E). Similar data were
obtained when a clinically relevant ATM inhibitor was
used instead of siRNA knockdown (Fig. 3F). Because ma-
nipulation of PARP1/CHK1 function was leading to a DNA
damage response in tumor cells, and inhibition of ATM
further enhanced this effect, we next determined whether
drug exposure enhanced tumor cell radiosensitivity. In
both short-term and long-term colony assays, inhibition of
PARP1 � CHK1 function enhanced the toxic effects of
exposure to ionizing radiation (Fig. 3G).

In Figs. 1 and 2, we noted that loss of PARP1 function
suppressed CHK1 inhibitor-induced activation of ERK1/2.
Inhibition of CHK1 inhibitor-induced ERK1/2 activation
using an MEK1/2 inhibitor enhanced CHK1 inhibitor tox-
icity, an effect that was blocked by overexpressing an
activated form of MEK1 (Fig. 4A). However, expression of
a constitutively activated MEK1 protein only partially
suppressed the toxicity of PARP1 inhibitor � CHK1 inhib-
itor treatment (Fig. 4B). Expression of an activated form of
AKT significantly suppressed PARP1 inhibitor � CHK1
inhibitor lethality, and combined expression of activated
MEK1 and AKT proteins abolished drug toxicity (Fig. 4C).

Based on the cell survival findings in previous figures,
including evidence that ERK1/2 signaling promoted
MCL-1 and BCL-xL expression, we determined the apopto-
sis pathway(s) being induced by the combination of CHK1
and PARP1 inhibitors. Transformed mouse embryonic fi-

broblasts genetically deleted for BAX/BAK were resistant
to drug combination lethality (Fig. 5A). In contrast, cells
that were deleted for the caspase 8 substrate BID or for
BIM did not exhibit any reduction in drug lethality (Fig.
5A, data not shown). Overexpression of BCL-2 family pro-
teins has been shown to block CHK1 inhibitor � MEK1/2
inhibitor lethality (Grant and Dent, 2007). Overexpression
of BCL-xL suppressed CHK1 inhibitor � PARP1 inhibitor
lethality that was reversed by the addition of a small-
molecule inhibitor of BCL-2 family proteins, 2-amino-6-
bromo-a-cyano-3-(ethoxycarbonyl)-4H-1-benzopy ran-4-acetic acid
ethyl ester (HA14-1) (Fig. 5B). Data similar to that for HA14-1
were obtained when a clinically relevant BCL-2/BCL-xL/
MCL-1 inhibitor, obatoclax (GX15-070), was used. Together,
these findings demonstrate that CHK1 inhibitors synergize
with PARP1 inhibition to kill multiple carcinoma cell types
via the intrinsic apoptosis pathway.

Discussion
Previous studies by this group have argued that MEK1/2

inhibitors or farnesyltransferase inhibitors interact with
the CHK1 inhibitor UCN-01 to promote tumor cell-specific
killing in a wide variety of malignancies including breast,
prostate, and multiple hematological cell types (Grant and
Dent, 2007). The net output of the cytoprotective RAS-
MEK1/2-ERK1/2 pathway has been shown previously to be
a critical determinant of tumor cell survival (Riches et al.,
2008). Furthermore, activation of this cascade has been
observed as a compensatory response of tumor cells to
various environmental stresses, including cytotoxic drugs.
The present studies were initiated to determine whether
CHK1 inhibitors, which cause ERK1/2 activation and a

TABLE 1
CHK1 inhibitors synergize with PARP1 inhibitors to kill pancreatic carcinoma cells
PANC-1 (pancreatic) and MiaPaca2 (pancreatic) carcinoma cells were plated as single cells (250–2000 cells/well) in sextuplicate, and 12 h after this plating, the infected cells
were treated with vehicle (DMSO), the PARP1 inhibitor PJ34 (0.75–3.0 �M), the CHK1 inhibitors UCN-01 (22.5–37.5 nM) or AZD7762 (6.25–25.0 nM), or the combinations
of the PARP1 and CHK1 inhibitor drugs combined, as indicated at a fixed concentration ratio to perform median dose-effect analyses for the determination of synergy.
Forty-eight hours after drug exposure, the media were changed, and cells were cultured in drug-free media for an additional 10 to 14 days. Cells were fixed, stained with
crystal violet, and colonies of �50 cells/colony were counted. Colony formation data were entered into the CalcuSyn program, and CI values were determined. A CI value of less
than 1.00 indicates synergy.

AZD7762 PJ34 Fa CI UCN01 PJ34 Fa CI

nM �M nM �M

Panc1 6.25 0.75 0.26 0.40 12.5 0.75 0.27 0.41
12.5 1.50 0.39 0.48 25.0 1.50 0.42 0.44
25.0 3.00 0.62 0.43 50.0 3.00 0.54 0.58

MiaPaca2 6.25 0.75 0.38 0.51 12.5 0.75 0.37 0.45
12.5 1.50 0.45 0.68 25.0 1.50 0.44 0.68
25.0 3.00 0.68 0.62 50.0 3.00 0.74 0.40

Fa, fraction affected.

TABLE 2
CHK1 inhibitors synergize with PARP1 inhibitors to kill mammary carcinoma cells
MCF7 carcinoma cells plated as single cells (250–2000 cells/well) in sextuplicate, and 12 h after this plating, the infected cells were treated with vehicle (VEH, DMSO), the
PARP1 inhibitor PJ34 (0.75–3.0 �M), the CHK1 inhibitors UCN-01 (22.5–37.5 nM) or AZD7762 (6.25–25.0 nM), or the combinations of the PARP1 and CHK1 inhibitor drugs,
as indicated at a fixed concentration ratio to perform median dose-effect analyses for the determination of synergy. Forty-eight hours after drug exposure, the media were
changed, and cells were cultured in drug-free media for an additional 10 to 14 days. Cells were fixed, stained with crystal violet, and colonies of �50 cells/colony were counted.
Colony formation data were entered into the CalcuSyn program, and CI values were determined. A CI value of less than 1.00 indicates synergy.

AZD7762 PJ34 Fa CI UCN01 PJ34 Fa CI

nM �M nM �M
6.25 0.75 0.16 0.49 12.5 0.75 0.17 0.53
12.5 1.50 0.33 0.52 25.0 1.50 0.32 0.54
25.0 3.00 0.51 0.54 50.0 3.00 0.43 0.47

Fa, fraction affected.
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DNA damage response, interact with inhibitors of PARP1;
PARP1 is a protein that plays a key role in DNA repair and
regulation of ERK1/2 signaling. Based on the expression of
a dominant-negative CHK1 protein, UCN-01 and AZD7762-
induced activation of ERK1/2 was dependent on inhibition of
CHK1; furthermore, expression of dominant-negative CHK1
enhanced basal levels of ERK1/2 phosphorylation arguing for
a central regulatory role between CHK1 and the RAF-MEK-
ERK1/2 pathway. Thus, our findings argue that inhibition of
CHK1 is essential, in part, for the activation of ERK1/2 to occur
by CHK1 inhibitors.

Suppression of CHK1 function has been shown to cause

DNA damage in transformed cells as judged by increased
H2AX phosphorylation. The damage-stimulated phosphor-
ylation of H2AX has been associated with the actions of the
ATM protein (Riches et al., 2008). An additional hallmark
of the cellular DNA damage response is activation of
PARP1 (Rodon et al., 2009). PARP1 activation results in
ADP ribosylation of multiple DNA repair complex proteins,
transcription factors, and PARP1 itself. As a result of this
effect on multiple repair proteins, loss of PARP1 function
promotes genomic instability and leads to hyperactivation
of CHK1 with increased cell numbers in G2 phase (Lu et
al., 2006). This is also of interest because other groups
have postulated the chemotherapy-sensitizing effect of
CHK1 inhibitors is due to abrogation of the G2 checkpoint
(Prudhomme, 2006). In our studies, two chemically dis-
tinct CHK1 inhibitors rapidly promoted H2AX phosphory-
lation and increased PARP1 ADP ribosylation. Inhibition
of PARP1 function blocked CHK1 inhibitor-induced H2AX
phosphorylation and blocking CHK1 inhibitor-induced ac-
tivation of ERK1/2. The inhibition of induced H2AX phos-
phorylation by PARP inhibition is probably explained by
the requirement that ATM has for PARP1 function in
being able to become activated after DNA damage and in
our studies, knockdown of ATM blocked CHK1 inhibitor-
induced H2AX phosphorylation (Haince et al., 2007). And
of note, ATM/checkpoint pathway signaling has been
linked previously in one of our prior studies to the regula-
tion of the ERK1/2 pathway (Golding et al., 2007).

We presented evidence previously that inhibition of
CHK1-induced ERK1/2 activation further enhanced H2AX
phosphorylation, indicative that loss of ERK1/2 signaling
increased the amount of DNA damage being induced by the
CHK1 inhibitor (Dai et al., 2008). This correlated with a
subsequent profound induction of apoptosis. The present
work demonstrated that inhibition of PARP1 blocked not
only ERK1/2 activation but also H2AX phosphorylation.
However, despite blocking the apparent DNA damage-sig-
naling response, we found that PARP1 inhibitors signifi-
cantly enhanced the lethality of CHK1 inhibitors. Based on
the use of BAX/BAK(	/	) cells and the expression of BCL-
xL, the induction of mitochondrial dysfunction was shown
to play a primary role in the synergistic induction of cell

Fig. 4. Inhibition of CHK1 inhibitor-induced ERK1/2 activation is not the
sole molecular mechanism of drug interaction. A, MCF7 cells were in-
fected in triplicate at an m.o.i. of 50 with either an empty vector adeno-
virus (CMV) or with an adenovirus to express constitutively activated
MEK1 EE. Twenty-four hours after infection, cells were treated with
vehicle (VEH, DMSO), PD98059 (25 �M), or UCN-01 (50 nM) as indi-
cated. Cells were isolated 48 h after exposure, and viability was deter-
mined using trypan blue exclusion. Data for each assay are the means of
all data points from three studies � S.E.M. B, MCF7 cells were infected
in triplicate at an m.o.i. of 50 with either an empty vector adenovirus
(CMV) or with an adenovirus to express constitutively activated MEK1
EE. Twenty-four hours after infection, cells were treated as indicated
with vehicle (VEH, DMSO), PJ34 (3 �M), UCN-01 (50 nM), or AZD7762
(25 nM). Cells were isolated 48 h after exposure, and viability was
determined using trypan blue exclusion. Data for each assay are the
means of all data points from three studies � S.E.M. C, MCF7 cells were
infected in triplicate at an m.o.i. of 50 with either an empty vector
adenovirus (CMV) or with adenoviruses to express constitutively acti-
vated MEK1 EE and/or constitutively activated AKT. Twenty-four hours
after infection, cells were treated as indicated with vehicle (VEH, DMSO),
PJ34 (3 �M), and/or AZD7762 (25 nM) as indicated. Cells were isolated
48 h after exposure, and viability was determined using trypan blue
exclusion. Data for each assay are the means of all data points from three
studies � S.E.M.
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killing after treatment of cells with a PARP1 inhibitor and
CHK1 inhibitors. It is noteworthy that mammary carci-
noma cells with very low basal levels of ERK1/2 activity
and that are relatively noninvasive such as MCF7 were
apparently as susceptible to being killed by exposure to
PARP1 inhibitor and CHK1 inhibitors as were mammary

carcinoma cells and pancreatic cancer cells with very high
basal levels of ERK1/2 activity and that are highly inva-
sive, such as MDA-MB-231 and PANC-1. Simian virus 40
large T antigen-transformed fibroblasts that are not tu-
morigenic in mice were also sensitive to the drug schedule,
although in agreement with prior findings, we have found
that multiple nontransformed/nonestablished cell types
such as primary mammary epithelial cells and CD34�

stem cells are insensitive to being killed by the CHK1
inhibitor � PARP1 pathway inhibitor combined drug ex-
posure regimen (A. Yacoub and P. Dent, unpublished ob-
servations). Together, our data suggest that CHK1 func-
tion plays a key role in maintaining cell viability in
transformed cells and does so, in part, by regulating
ERK1/2 pathway signaling as part of a DNA damage re-
sponse.

Overexpression of mitochondrial BCL-2 family members
has been shown in many tumor cell systems to raise the
apoptotic threshold of tumor cells (Cory and Adams, 2005;
Lee and Gautschi, 2006; Konopleva et al., 2008). Because
the potentiation of CHK1 inhibitor lethality by PARP1
inhibition occurs primarily by promoting mitochondrial
dysfunction, it would be assumed that over time, one of the
mechanisms by which cells could survive this treatment
will be a viability selection based on increased expression
of BCL-2 family members. With this general possibility in
mind for multiple chemotherapeutic treatments, several
drug companies have developed small-molecule inhibitors
of BCL-2, BCL-xL, and MCL-1, including the drugs gossy-
pol, ABT-737 (Oltersdorf et al., 2005), navitoclax (ABT-
263), and GX15-070 (Nguyen et al., 2007; Tse et al., 2008).
In the present studies, we noted that a commercially avail-
able inhibitor of BCL-2 and BCL-XL, HA14-1, significantly
enhanced the lethality of the two drug (CHK1 inhibitor �
PARP1 inhibitor) regimen. Prior studies have also shown
that HA14-1 can overcome the protective effect of BCL-xL
in cells treated with UCN-01 and PD184352 (Hamed et al.,
2008). Furthermore, the clinically relevant BCL-2 inhibi-
tor obatoclax also enhanced (CHK1 inhibitor � PARP1

Fig. 5. Loss of BAX/BAK function abolishes the toxic interaction between
CHK1 inhibitors and PARP-1 inhibitors; cell killing is potentiated by
inhibitors of BCL-2/BCL-xL function. A, transformed mouse embryonic
fibroblasts [MEF; wild type, WT; deleted for BAX and BAK, BAX/BAK(	/
	); deleted for BID, BID(	/	)] were plated in triplicate and treated with
vehicle (VEH, DMSO), PJ34 (3 �M), UCN-01 (50 nM), or AZD7762 (25
nM). Cells were isolated 48 h after exposure, and viability was deter-
mined using trypan blue exclusion. Data for each assay are the means of
all data points from three studies � S.E.M. B, PANC-1 and MCF7 cells
were infected with either an empty vector adenovirus (CMV) or with an
adenovirus to express BCL-XL. Twenty-four hours after infection, cells
were pretreated for 30 min with vehicle (VEH, DMSO) or HA14-1 (10 �M)
and then treated as indicated with vehicle (VEH, DMSO) or PJ34 (3 �M)
and UCN-01 (50 nM). Cells were isolated 48 h after exposure, and
viability was determined in triplicate using trypan blue exclusion. Data
for each assay are the means of all data points from two studies � S.E.M.
C, MCF7 cells were infected with either an empty vector adenovirus
(CMV) or with an adenovirus to express BCL-XL. Twenty-four hours after
infection, cells were pretreated for 30 min with vehicle (VEH, DMSO) or
obatoclax (GX15-070, 50 nM) and then treated as indicated with vehicle
(VEH, DMSO) or PJ34 (3 �M) and UCN-01 (50 nM). Cells were isolated
48 h after exposure, and viability was determined in triplicate using
trypan blue exclusion. Data for each assay is the mean of all data points
from two studies � S.E.M. �, p � 0.05 less than corresponding value in
empty vector virus-infected cells; #, p � 0.05 greater than corresponding
value in empty vector-infected cells not treated with obatoclax; $, greater
than corresponding value in BCL-xL-infected cells treated with obato-
clax.
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inhibitor) toxicity and overcame the protective effect of
BCL-xL overexpression. Together, these findings demon-
strate that the potentiation of CHK1 inhibitor lethality by
PARP1 inhibitors can be profoundly enhanced by addi-
tional destabilization of mitochondrial function via inhibi-
tion of BCL-2 family member activity(ies).

In conclusion, inhibition of PARP1 blocks CHK1 inhibi-
tor-induced activation of both the DNA damage-response
machinery and of ERK1/2. Studies beyond the scope of this
article are required to determine whether this drug com-
bination alters tumor cell survival in vivo.
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Graziani G and Szabó C (2005) Clinical perspectives of PARP inhibitors. Pharmacol
Res 52:109–118.

Hagan MP, Yacoub A, and Dent P (2007) Radiation-induced PARP activation is
enhanced through EGFR-ERK signaling. J Cell Biochem 101:1384–1393.

Hagenauer B, Maier-Salamon A, Thalhammer T, Zöllner P, Senderowicz A, and
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Correction to “Poly(ADP-Ribose) Polymerase 1
Modulates the Lethality of CHK1 Inhibitors in
Carcinoma Cells”

In the above article [Mitchell C, Park M, Eulitt P, Yang C, Yacoub A, and Dent P (2010)
Mol Pharmacol 78:909–917], Figs. 3 to 5 are incorrect because of errors during manuscript
processing. The corrected figures and their legends appear below.

The online version of this article has been corrected in departure from the print version.

The printer regrets this error and apologizes for any confusion or inconvenience it may
have caused.

Fig. 3. Continued. E, MCF7 cells were transfected with nonspecific siRNA control (siSCR) or an siRNA to knock down ATM (siATM). Twenty-four hours
after transfection, cells were treated with vehicle (VEH, DMSO) and/or by AZD7762 (25 nM) or UCN-01 (50 nM). Cells were isolated 48 h after exposure,
and viability was determined using trypan blue exclusion. Data for each assay is the mean of all data points from three studies � S.E.M. F, MCF7 cells were
plated in triplicate and treated with vehicle (VEH, DMSO), AZD2281 (0.5 �M), AZD7762 (25 nM), or AZD2281 � AZD7762 in combination. Thirty minutes
after exposure, cells are treated with vehicle (DMSO) or with increasing concentrations of the ATM inhibitor 2-(4-morpholinyl)-6-(1-thianthrenyl)-4H-pyran-
4-one (KU55933) (1–10 �M). Cells were isolated 48 h after exposure, and viability was determined using trypan blue exclusion. Data for each assay is the
mean of all data points from three studies � S.E.M. G, left, MCF7 cells were plated and treated with vehicle (VEH, DMSO) or the PARP-1 inhibitor PJ34
(3 �M) followed 30 min later by CHK1 inhibitor AZD7762 (25 nM). Cells were irradiated (4 Gy) and used for short-term viability assays 48 h after exposure
and for viability determined using trypan blue exclusion. Right, MCF7 cells were plated in sextuplicate as single cells, and 12 h after plating, cells were
treated with vehicle (VEH, DMSO) or the PARP-1 inhibitor PJ34 (3 �M) followed 30 min later by CHK1 inhibitors UCN-01 (50 nM) or AZD7762 (25 nM).
Cells were irradiated 30 min after drug additions. Forty-eight hours after drug exposure, the media were changed, and cells were cultured in drug-free media
for an additional 10 to 14 days (n � 2 � S.E.M.).
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Fig. 4. Inhibition of CHK1 inhibitor-induced ERK1/2 activation is not the sole molecular mechanism of drug interaction. A, MCF7 cells were infected
in triplicate at an m.o.i. of 50 with either an empty vector adenovirus (CMV) or with an adenovirus to express constitutively activated MEK1 EE.
Twenty-four hours after infection, cells were treated with vehicle (VEH, DMSO), PD98059 (25 �M), or UCN-01 (50 nM) as indicated. Cells were
isolated 48 h after exposure, and viability was determined using trypan blue exclusion. Data for each assay are the means of all data points from three
studies � S.E.M. B, MCF7 cells were infected in triplicate at an m.o.i. of 50 with either an empty vector adenovirus (CMV) or with an adenovirus to
express constitutively activated MEK1 EE. Twenty-four hours after infection, cells were treated as indicated with vehicle (VEH, DMSO), PJ34 (3 �M),
UCN-01 (50 nM), or AZD7762 (25 nM). Cells were isolated 48 h after exposure, and viability was determined using trypan blue exclusion. Data for
each assay are the means of all data points from three studies � S.E.M. C, MCF7 cells were infected in triplicate at an m.o.i. of 50 with either an empty
vector adenovirus (CMV) or with adenoviruses to express constitutively activated MEK1 EE and/or constitutively activated AKT. Twenty-four hours
after infection, cells were treated as indicated with vehicle (VEH, DMSO), PJ34 (3 �M), and/or AZD7762 (25 nM) as indicated. Cells were isolated 48 h
after exposure, and viability was determined using trypan blue exclusion. Data for each assay are the means of all data points from three studies �
S.E.M.
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Fig. 5. Loss of BAX/BAK function abolishes the toxic interaction between CHK1 inhibitors and PARP-1 inhibitors; cell killing is potentiated by
inhibitors of BCL-2/BCL-xL function. A, transformed mouse embryonic fibroblasts [MEF; wild type, WT; deleted for BAX and BAK, BAX/BAK(�/�);
deleted for BID, BID(�/�)] were plated in triplicate and treated with vehicle (VEH, DMSO), PJ34 (3 �M), UCN-01 (50 nM), or AZD7762 (25 nM). Cells
were isolated 48 h after exposure, and viability was determined using trypan blue exclusion. Data for each assay are the means of all data points from
three studies � S.E.M. B, PANC-1 and MCF7 cells were infected with either an empty vector adenovirus (CMV) or with an adenovirus to express
BCL-XL. Twenty-four hours after infection, cells were pretreated for 30 min with vehicle (VEH, DMSO) or HA14-1 (10 �M) and then treated as
indicated with vehicle (VEH, DMSO) or PJ34 (3 �M) and UCN-01 (50 nM). Cells were isolated 48 h after exposure, and viability was determined in
triplicate using trypan blue exclusion. Data for each assay are the means of all data points from two studies � S.E.M. C, MCF7 cells were infected
with either an empty vector adenovirus (CMV) or with an adenovirus to express BCL-XL. Twenty-four hours after infection, cells were pretreated for
30 min with vehicle (VEH, DMSO) or obatoclax (GX15-070, 50 nM) and then treated as indicated with vehicle (VEH, DMSO) or PJ34 (3 �M) and
UCN-01 (50 nM). Cells were isolated 48 h after exposure, and viability was determined in triplicate using trypan blue exclusion. Data for each assay
is the mean of all data points from two studies � S.E.M. �, p � 0.05 less than corresponding value in empty vector virus-infected cells; #, p � 0.05
greater than corresponding value in empty vector-infected cells not treated with obatoclax; $, greater than corresponding value in BCL-xL-infected
cells treated with obatoclax.
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